
LMCACHE: AN EFFICIENT KV CACHE LAYER
FOR ENTERPRISE-SCALE LLM INFERENCE

Yihua Cheng 1 * Yuhan Liu 1 2 * Jiayi Yao 1 2 *

Yuwei An 1 Xiaokun Chen 1 Shaoting Feng 1 Yuyang Huang 1 2 Samuel Shen 1

Kuntai Du 1 Junchen Jiang 1 2

ABSTRACT
Today’s LLM inference systems treat individual engines and queries independently for simplicity, but this causes
significant resource inefficiencies. While there are proposals to avoid redundant computation by reusing KV
caches across queries and to increase GPU utilization by disaggregating a single query to different engines, their
promises cannot be realized without efficiently offloading and communicating KV cache across LLM inference
engines and queries. We present LMCACHE, the first and so far the most efficient open-source KV caching
solution, which extracts and stores KV caches generated by modern LLM engines (vLLM and SGLang) and shares
the KV caches across engines and queries. LMCACHE exposes KV caches in the LLM engine interface, effectively
transforming LLM engines from individual token processors to a collection of engines with KV cache as the
storage and communication medium. In particular, it supports both cache offloading (prefix reuse across queries)
and prefill–decode (PD) disaggregation (cross-engine cache transfer). LMCACHE’s high performance and wide
adoption stem from the following contributions: (i) highly optimized KV cache data movement with performance
optimizations including batched data movement operations, compute and I/O pipelining; (ii) a modular KV cache
connector component, decoupling LMCACHE from the rapid evolution of inference engines; (iii) a first-class
control API, such as pinning, lookup, cleanup, movement, and compression, for flexible cache orchestration across
GPU, CPU, storage, and network layers. Evaluation shows that combining LMCACHE with vLLM achieves
up to 15× improvement in throughput across workloads such as multi-round question answering and document
analysis. With a growing community, LMCACHE has seen dramatic growth in adoption by enterprise inference
systems, which provides valuable lessons for future KV caching solutions. The source code of LMCACHE is at:
https://github.com/LMCache/LMCache.

1 INTRODUCTION

Today, large-language model (LLM) inference has outpaced
training in growth. LLM inference powers a wide range of
applications, from interactive customer support and code
generation to retrieval-based document analysis and agentic
workflows. However, the LLM inference systems have not
caught up—latency (both response latency and generation
speed) and cost are now the bottleneck.

A key limitation of today’s LLM inference systems is that
each user query is independently processed by one instance
of the inference engine, without any data being reused across
queries or inference engines. This means that a LLM query’s
lifecycle, including computation and I/O operations, hap-
pens in the GPUs and the GPU memory of one inference

1TensorMesh Inc., Foster City, CA, USA 2University of
Chicago, Chicago, IL, USA. Correspondence to: Junchen Jiang
<junchenj@uchicago.edu>.

*Equal contribution

engine. Each query takes a token sequence as input and an-
other token sequence as output, and once a query completes,
all outputs or intermediate states generated during inference
are discarded.

This design, albeit simple, leads to redundant computation
and resource underutilization, and two notable industry pro-
posals attempted to address them (Figure 1).

Cross-query caching to avoid redundant compute: As
each query is treated in isolation, the LLM must prefill
the same context (prefix) each time the context is used,
and the repeated prefill compute is expensive and causes
slow response, as users cannot see the first token before
the prefill completes. Yet, such redundant computation
could be avoided if we persist KV cache of the prefix—
which LLM created internally after it prefills the prefix—
beyond the lifecycle of a query and reuse the KV cache
when subsequent queries reuse the prefix (e.g., the same
prompt template or retrieved document chunk). By avoiding
redundant computation, cross-query context (prefix) caching

https://github.com/LMCache/LMCache


LMCache: An Efficient KV Cache Layer for Enterprise-Scale LLM Inference

LLM inference 
engine

(prefillers)

LLM inference 
engine

(decoders)

Request input Request output

LLM inference 
engine

LMCache
Cross-query reuse of KV caches

LLM inference 
engine

LMCache
Cross-engine sharing 

of KV caches

Request 
#1

Request 
#2

Request 
#3

(b) PD disaggregation: Cross-engine 
sharing of KV caches

(a) Context caching: Cross-query reusing via 
CPU/disk offloading of KV cache

Figure 1. LMCACHE supports both context caching (KV cache offloading and sharing across queries) and PD disaggregation (cross-
engine transfer of KV caches.

significantly lowers both time-to-first-token (TTFT) and
overall GPU resource consumption during the prefill phase.

Prefill–decode disaggregation for higher utilization: Co-
locating the prefill phase (compute-bound, throughput-
oriented) and the decode phase (memory-bound, latency-
sensitive) in the same inference engine causes resource
underutilization as the GPUs must be overprovisioned to
ensure a consistently low decoding latency without being
interrupted by prefill. In response, the industry attempted
to decouple the throughput-oriented prefill processing from
latency-sensitive decoding Such prefill-decode (PD) diag-
gregation architecture batches all queries’ prefill phase on
one set of inference nodes and transfers their KV caches to
another set of inference nodes that run the decoding phase
only, thus mitigating tail decoding latency under high con-
currency.

To make these ideas practical, the LLM inference systems
must be augmented with new KV cache semantics. In par-
ticular, inference engines should support the new interface
that extracts KV caches from a normal inference call and re-
loads KV caches into subsequent queries on demand. The
system also must allow the extracted KV caches to be stored
persistently and transferred across distributed inference en-
gines. Most importantly, for such interface extensions to
be practical, KV cache extraction, re-loading, storage, and
transfer must be efficient, and the new interfaces must re-
main compatible with rapidly evolving inference engines
such as vLLM (Kwon et al., 2023b) and SGLang (Zheng
et al., 2024).

We introduce LMCACHE, the first open-source library that
provides a high-performance implementation of these new
KV cache semantics. With LMCACHE, KV cache can
be extracted from and loaded back to inference engines
efficiently, stored in a hierarchy of storage devices (CPU
memory, local disk, remote disk, and Redis), and transferred
over different networks (Ethernet, RDMA, NVLink).

LMCACHE makes three distinct contributions.

#1. Highly optimized performance: LMCACHE incor-
porates a series of performance optimizations that make
storing and loading KV cache efficient and practical in real
deployments. For instance, LMCACHE batches operations
to pipeline the storing and loading of KV cache, as well as to
pipeline GPU compute and data loading/storing (e.g., load-
ing next layer’s KV cache while performing computations
for the current layer). Moreover, rather than storing/loading
KV cache at the granularity of the inference engine’s na-
tive small page size, LMCACHE stores/loads KV cache at a
configurable chunk size, often much larger than page size,
to fully utilize the bandwidth between storage devices and
GPU memory. LMCACHE also minimizes the copies of KV
cache data when moving them among different storage tiers,
by implementing zero-copy operations.

#2. Standardized interface with inference engines: LM-
CACHE defines standardized connector interfaces that re-
main compatible with fast-changing inference engine back-
ends. On average, 15–20 new open-weight models are re-
leased every week in 2025, so to best utilize new hardware
for the new models, modern LLM inference engines must
evolve rapidly, potentially changing the KV cache layout in
GPU memory and thus affecting the LMCACHE interface.
To address this, LMCACHE designs and implements a modu-
lar KV cache connector interface that decouples LMCACHE
with the inference engine backend, so LMCACHE can easily
adapt to the evolving APIs in the inference engines.

#3. Flexible KV cache management interface: The inter-
face augmentation introduced by LMCACHE exposes KV
cache, a new data structure in LLM inference. LMCACHE
exposes APIs that allow developers and operators to locate,
move, pin, and even compress KV cache extracted from
inference engines. These first-class APIs allow higher-level
applications, such as query schedulers or routers, to make
better decisions, such as KV cache-aware query routing.



LMCache: An Efficient KV Cache Layer for Enterprise-Scale LLM Inference

Our evaluation demonstrates that LMCACHE consistently
outperforms both built-in KV caching mechanisms in open-
source inference frameworks and commercial inference
APIs, delivering up to 15× higher throughput and at least
2× lower latency across diverse settings, including local
prefix caching, distributed prefix reuse, and PD disaggre-
gation. Beyond quantitative gains, LMCACHE has seen
adoption across a number of enterprises and open-source
projects, informing practical lessons in KV cache–driven
optimization at production scale.

The remainder of this paper details the motivation (§2),
LMCACHE architecture and key design choices (§3–§6),
experimental evaluation (§8), and deployment experiences
(§9).

2 MOTIVATION

2.1 Inference Cost and Delay as the Bottleneck

The past two years have witnessed explosive growth in the
deployment of LLMs across diverse enterprise applications.
As the user base and query volume of LLM-based applica-
tions increase, the cost and delay of inference, rather than
training, emerges as the primary bottleneck to scaling LLM
serving to production scale.

Inference cost: Besides the simple fact that LLMs are
queried by more users, the increasing input length and out-
put length also contribute to raising inference cost, as each
input token and each output token incur an additional cost
to process. Four trends are behind the increase in input
and output lengths. (i) More interactions by each user with
LLMs build a longer user history, which will be prepended
to future LLM inputs as the context. (ii) LLMs increas-
ingly take multimodal inputs, such as images and videos,
which typically will be transformed to a long sequence of
tokens before being fed to LLMs. (iii) Newer LLMs often
have longer context windows, allowing context/prompt en-
gineers to simply stuff more tokens into LLM inputs. (iv)
Finally, reasoning models produce unusually long output,
which might be used as input to subsequent queries in one
workflow.

Even with steady improvement on GPU price and perfor-
mance, serving a trillion-token-scale workload can incur
millions of dollars in annual compute expenditure (Nie et al.,
2024; Databricks Research, 2024). Redundant computation
across queries (e.g., recomputing the same prompt prefix
hundreds of times) exacerbates these costs (Zhang et al.,
2024; Caylent, 2024).

Inference delay: In interactive applications, tail latency
(e.g., 95th/99th percentile) is as critical as median latency.
Slow responses in the worst case, often due to resource

contention or large context processing, directly degrade
user experience and can lead to user abandonment, in much
the same way video streaming stalls affect viewer experi-
ence (Liu et al., 2024a).

In particular, empirical observations from industry reports
and academic studies indicate that:

• Time-to-first-token (TTFT) can be dominated by the
prefill phase for long-context inputs, especially when
context lengths exceed 8–16k tokens.

• Inter-token latency (ITL) remains low for single-stream
decoders, but rises sharply when GPU compute is shared
across many concurrent sessions.

• Tail delays are disproportionately impacted by scenarios
requiring large prompt recomputation or reallocation of
memory-bound resources.

2.2 KV Caching as a Cross-Cutting Optimization

KV cache was originally introduced to accelerate a single
inference query by storing the attention states, in the form of
K and V tensors, for input tokens and previously generated
tokens directly in GPU memory. KV cache effectively stores
the attention information between each pair of tokens that
have been seen so far in this query. In short, it is a LLM-
native representation of knowledge.

In all popular transformer architectures, these caches are
stored and used only within the lifecycle of an individual
query and discarded when the query ends. Yet, KV caching
can be extended to support two critical performance opti-
mizations in production-scale serving:

1. Context caching (i.e.,cross-query KV cache reuse) per-
sists KV cache segments from one query and reusing
them for subsequent queries that share a common pre-
fix. Examples include document analysis where the
same document (chunk) remains constant across multi-
ple queries, and multi-turn dialogues with a fixed system
prompt or long preamble. Prefix caching reduces re-
dundant computation during the prefill phase, directly
lowering TTFT and GPU-hours per query (Liu et al.,
2024b; Gao et al., 2024; Jin et al., 2025b; Ren et al.,
2025; Qin et al., 2025a; Jin et al., 2024; Chen et al.,
2024; 2025).

2. Prefill–decode (PD) disaggregation (i.e.,cross-engine
KV cache transfer) splits inference into a prefill stage
(processing the entire input prompt) and a decode stage
(autoregrssive token generation) across different GPUs
or nodes. This approach reduces tail latency by maxi-
mizing the decoding speed without being interrupted by
the prefill phase (Zhong et al., 2024; Patel et al., 2024;
Shi et al., 2025).

Roles of KV caching: Both optimizations critically depend



LMCache: An Efficient KV Cache Layer for Enterprise-Scale LLM Inference

Message Size Transfer Throughput

64KB 4GBps
256KB 13GBps
1MB 30GBps

10MB 46GBps
16MB 49GBps

100MB 49GBps

Table 1. Transfer message size vs achieved transfer throughput
using RCCL transfer library (UCCL Team, 2025).

on the ability to move KV cache segments efficiently to and
from GPU memory, CPU DRAM, NVMe storage, or over
the network.

• Context reusing stores the KV cache of a context for
as long as the context will be reused, so it requires a
hierarchical storage of KV caches and efficient sharing
of KV caches across multiple serving engine instances.

• PD disaggregation requires fast KV cache transfer be-
tween GPUs, often across PCIe, NVLink, or RDMA, in
order to minimize the end-to-end delay of each query,
which runs across the prefiller nodes and the decoder
nodes.

2.3 Challenges of Efficient KV Caching

Despite their potential, the practical adoption of prefix
caching and PD disaggregation is limited by three inter-
related systems challenges:

2.3.1 Challenge #1: I/O inefficiency under paged memory

KV cache storage and transfer used to rely on PyTorch seri-
alization (torch.save / torch.load) or primitive ten-
sor copying, with a typical transfer speed of only sub-1GB/s.
These methods introduce non-trivial delay overhead, espe-
cially when handling large data structures like KV caches,
and lack zero-copy support with various storage devices
(local or remote), causing extra CPU-GPU data copies.

Recent high-throughput inference engines, such as
vLLM (Kwon et al., 2023b) and SGLang (Zheng et al.,
2024), make KV cache storage and transfer even more chal-
lenging. They employ paged attention memory, dividing the
attention buffer into small, fixed-size pages (typically 16–64
KB). For instance, vLLM uses 62.5-KB page in Llama-
3.1-8B-Instruct model. The paged memory architecture
is widely used because it improves batching and memory
utilization.

However, because the pages of a KV cache are not al-
ways contiguous, the paged memory architecture dramat-
ically increases the number of small-sized I/O operations
required to persist or transfer a KV cache. Transferring such

small chunks of data is known to suffer from network band-
width underutilization and reduce throughput (Kwon et al.,
2025; NVIDIA Developer Forums, 2020; Meta Engineering,
2024). Prior work (Table 1) has shown that, on a setup
with two AMD GPU nodes connected by eight Broadcom
Thor-2 400Gbps NICs, the transfer size must reach at least
16 MB to saturate the available network bandwidth (Zhou
et al., 2025). Furthermore, prior work has shown that only
transferring a data size of megabyte range (e.g., 1–2MB) can
achieve 75–80% of the theoretical PCIe 5.0 bandwidth (Xie
et al., 2025).

2.3.2 Challenge #2: Compatible with fast-evolving
inference engines

With the widespread use of AI, new LLMs and hardware
accelerators are introduced at a rapid pace. In 2025, one
prominent LLM was released on average every 4 days (bes,
2025). In response, inference engines must evolve just as
quickly.

Each update to accommodate new models or hardware often
changes GPU memory allocation, which in turn changes
the KV cache interface. For example, when vLLM adopts a
new attention kernel that produces KV caches with different
dimensions, the KV caching library must be updated to
translate the new kernel’s output KV cache format into one
compatible with the KV cache library. Keeping up with
these frequent changes requires tremendous effort, given the
fast-moving inference engines.

2.3.3 Challenge #3: Lack of management APIs

As KV caching becomes a first-class citizen in the LLM
inference backend, various components (in addition to the
LLM inference engines), as well as ML ops teams, will
need to make decisions in a KV-cache-aware manner. Yet,
without a unified management interface to locate, evict, pin,
or compress caches, these upper-layer modules cannot make
informed placement or eviction decisions. This leads to
inefficient cache utilization, duplicated storage, and unpre-
dictable eviction policies. For instance, inference query
routers, which assign each query to one of the inference
engine instances, need to know the locations of KV caches,
in order to route queries to instances that already hold the
KV cache for matched prefix tokens locally (e.g., in CPU
memory).

Moreover, applications now also demand such KV-cache
management interfaces. In early 2025, for instance, a fi-
nancial company1 that has worked closely with LMCACHE
in the production setting asked for an interface that allows
users to explicitly pin frequently accessed financial docu-

1For confidentiality, we do not disclose names of enterprise
users in this report.



LMCache: An Efficient KV Cache Layer for Enterprise-Scale LLM Inference

ments in the KV caching system, for more efficient access
to popular contexts. As another example, an agent company
requested a series of APIs that allow them to identify the
KV cache of a given content, compress the KV cache, and
transfer the compressed KV cache across nodes.

2.4 Related Work and Existing Solutions

Several KV cache handling mechanisms exist, but none of
them fully address the above challenges:

Inference frameworks: Since the release of vLLM Pro-
duction Stack (vLLM project, 2025) in January 2025, there
have been several open-source distributed inference stacks,
including Nvidia’s Dynamo (NVIDIA Corporation, 2025),
AIBrix (Team et al., 2025), llm-d (llm-d Project, 2025),
SGLang OME (Team, 2025), and KServe (Contributors,
2025b). They focus on easy deployment of inference engine
solutions over Kubernetes, and technically, they all support
various query routers based on load or prefix cache aware-
ness and support KV caching, where LMCACHE is used in
vLLM production stack, Dynamo, llm-d, and KServe.

Inference engine-native KV caching: Open-source in-
ference engines, like vLLM and SGLang, also offer native
GPU-to-CPU KV cache transfers, but it is designed for
single-node inference, so they lack cross-node transfer op-
timization or hierarchical storage support for KV cache.
We will evaluate their performance and compare it against
LMCACHE in §7.

KV cache storage layers: Mooncake (Qin et al., 2025b),
Redis (Redis, 2025), InfiniStore (ByteDance, 2025), and
3FS (Contributors, 2025a) provide distributed object storage
or caching, but they lack an efficient “glue” layer between
the inference engines to efficiently move small tensors fre-
quently across different storage tiers, or are tightly coupled
with a specific inference framework.

Proprietary implementations: Proprietary inference APIs
(e.g., Fireworks AI, Together AI) implement their own prefix
caching internally, but these are tied to their closed-source
serving stacks and are not accessible to operators deploying
their own infrastructure.

Source code for research: Several research proposals have
open-sourced prototypes for their KV cache optimizations,
including prefix caching (Kwon et al., 2023a; Zheng et al.,
2024; Yu et al., 2025; Gim et al., 2024; Ye et al., 2024; Lee
et al., 2024; Zhao et al., 2024; Jin et al., 2024; Gao et al.,
2024; Chen et al., 2025; Jin et al., 2025a; Yang et al., 2025),
PD disaggregation (Zhong et al., 2024; Patel et al., 2024; Shi
et al., 2025), and KV cache compression (Liu et al., 2024c;
Jegou et al., 2024; Xiao et al., 2024a;b; Li et al., 2024; Qin

Storage backend
(Mooncake, Redis, infinistore, …)

LLM inference engine
(vLLM, SGLang)

LMCache
Distributed KV cache layer

KV cache

Figure 2. LMCACHE sits between LLM inference engines and het-
erogeneous storage/network devices.

et al., 2025c; Tang et al., 2024; Ge et al., 2024; Li et al.,
2025; Du et al., 2025; Zhang et al., 2025). However, these
prototypes are typically built on research-oriented inference
framworks, such as HuggingFace Transformers, not fully
enterprise-ready, or are not designed to evolve alongside
the rapidly changing inference engine ecosystem, such as
SGLang and vLLM.

3 OVERVIEW OF LMCACHE

LMCACHE addresses these challenges by a unified, high-
performance KV caching layer capable of efficient stor-
age, movement, and explicit management of KV caches for
paged-memory inference engines, making prefix caching
and PD disaggregation practical at enterprise scale.

As a KV caching layer, LMCACHE sits between LLM in-
ference engines and heterogeneous storage/network devices
(Figure 2). Its goal is to provide a standardized, high-
performance substrate for KV cache movement and man-
agement, while remaining compatible with rapidly evolving
inference frameworks such as vLLM and SGLang.

3.1 Architecture

At a high level, LMCACHE connects to inference engines
to move KV cache between GPU memory and the storage
backend. Figure 3 shows the end-to-end system. Below, we
walk through two example workflows: storing and retrieving
KV cache.

Store: When a new query arrives, it first passes through
the KV connector, which prepares metadata such as the
tokenized input prompt and GPU memory addresses of the
relevant pages. The query then goes to the token processor,
which determines how many new tokens are not yet in the
backend and need to be stored. Finally, the storage manager
saves the KV cache for these new tokens to the backend via
the transfer channel, which handles the data transfer logic.



LMCache: An Efficient KV Cache Layer for Enterprise-Scale LLM Inference

Retrieve: When a query requires loading KV cache from
the backend, it also starts with the KV connector to pre-
pare metadata. The token processor identifies the number
of prefix-matched tokens already in the backend. Next, the
event manager checks if the same query ID has been seen
before. If so, the cached memory addresses are already
tracked and can be returned directly to the GPU connector,
which loads the KV cache back into GPU memory. The
event manager also launches asynchronous, layer-wise load-
ing events as described in §4.2. If the query ID is new, it
is forwarded to the storage manager to look up the CPU
memory addresses of the stored KV cache.

Lookup: When a query needs to check whether the KV
cache for specific tokens exists in the backend, higher-level
components such as routers query the cache controller. The
cache controller maintains a token pool that records all
tokens currently stored in the KV cache backend. Whenever
a LMCACHE instance stores or evicts a KV cache, the
LMCACHE worker inside the instance updates the token
pool with the new status. This ensures the token pool always
has the up-to-date information of tokens in the backend.

3.2 Key Components

LMCACHE is composed of a high-performance data plane
and a flexible control plane.

LMCACHE Worker (Data Plane).: Each inference engine
is paired with a LMCACHE worker. The LMCACHE worker
module is responsible for moving KV caches between GPU
memory and other tiers or other workers. It implements
both KV offloading (to CPU or disk) and PD disaggregation
(GPU–GPU transfer). To maximize throughput, workers
employ kernel-optimized GPU buffers, asynchronous chun-
ked I/O, and layer-wise pipelining, as elaborated in the next
section. These techniques allow LMCACHE to sustain near-
GPU-resident bandwidth even when handling small paged
memory objects (16–64KB), a common configuration in
vLLM and SGLang.

LMCACHE Controller (Control Plane).: The controller
exposes a programmable API to system operators and
higher-level schedulers. It provides cache lifecycle manage-
ment primitives, such as pinning KV segments, compressing
and decompressing cache tensors, migrating caches between
devices, and evicting low-priority entries. The controller
also maintains a virtualized namespace, enabling uniform
addressing of caches across heterogeneous devices.

Together, the LMCACHE worker and controller form a mod-
ular system that integrates seamlessly into enterprise-scale
serving pipelines. The worker ensures fast data movement,
while the controller provides higher-level control semantics
necessary for efficient resource utilization.

4 PERFORMANCE OPTIMIZATIONS

An important aspect of LMCACHE is improving the effi-
ciency of KV cache movement across devices. In enterprise-
scale LLM inference, LMCACHE addresses three key chal-
lenges:

• modern LLM inference engines manage KV cache at the
granularity of pages2, which are typically 20 KB–63 KB
for popular models including Llama, Qwen, GPT-OSS
etc. Such small units are inefficient for transferring, as
they cannot saturate bandwidth (Xie et al., 2025; Zhou
et al., 2025);

• KV cache transfers often need to run concurrently with
LLM inference. This introduces overhead from two
sources. First, data movement can stall inference if trans-
fers are executed in the same CUDA stream as computa-
tion. Second, launching memory-copy CUDA functions
incurs CPU overhead, as each call consumes CPU cycles
and the consumption can be substantial when there are
many layers and pages.

• During LLM inference, large volumes of queries gener-
ate significant amount of KV caches. Duplicating them
on any storage device wastes space and introduces copy
overhead, which slows down inference.

Each of these challenges arose from hard lessons in both
open-source and enterprise deployments. This section
describes these challenges in detail and motivates LM-
CACHE’s design decisions.

4.1 Batched Operations

To address the I/O inefficiency caused by small KV cache
units, LMCACHE introduces a set of optimizations.

Configurable Chunk Size: Rather than transferring KV
cache at the page level, LMCACHE groups multiple pages
from multiple layers into larger chunks, with a default size
of 256 tokens per chunk3. This is achieved using an inter-
mediate GPU buffer. For storing, multiple pages (16 by
default) are first copied from GPU memory into the buffer,
then offloaded collectively to lower-tier storage (e.g., CPU
memory) and saved at the granularity of chunks rather than
individual pages. For loading, chunks are first retrieved from
the storage layer into the GPU buffer and subsequently split
into pages before being placed in the serving engine’s in-
ternal GPU memory. LMCACHE implements a customized
CUDA kernel to accelerate the memory copy.

Batched Store/load Operations: LMCACHE supports
storing and loading KV cache across multiple storage de-
vices, including local CPU memory, local disks, and remote

2Each page is 16 tokens for a single layer in vLLM.
3The chunk size is configurable to different I/O speeds.



LMCache: An Efficient KV Cache Layer for Enterprise-Scale LLM Inference

Inference
Engine

Scheduler
Model
Runner

KV Connector

GPU Connector

Cache Engine

LMCache
instance

Event Manager Storage Manager

Token Processor

Cache Controller

Cache
Engine

…
Inference
Engine

Storage / Network

…

Router

Storage Manager

PD
Backend

P2P
Backend

Remote
Backend

GPU
Memory

CPU
Memory

SSD

NVLink RDMA TCP

Transfer Channel

LMCache
Worker

LMCache
instance

Transfer Channel

…

Transfer Channel

Figure 3. End-to-end system workflow for LMCACHE.

disks. In practice, KV caches often need to be transferred to
different devices in parallel – for example, storing the KV
cache of a hot context in CPU memory while simultaneously
offloading a cold context to local disk. A naive approach
that stores the two KV caches sequentially underutilizes
available bandwidth, since transferring to CPU memory
leaves the disk bandwidth idle. To address this, LMCACHE
batches storage and loading queries across different tiers,
thereby aggregating operations and fully utilizing the band-
width between the GPU and multiple storage tiers.

Delayed Decode KV Cache Storing: LMCACHE also
supports saving newly generated KV cache during decoding.
In a naive design, each newly generated page is immediately
offloaded to lower-tier storage, incurring frequent small
writes. Instead, LMCACHE aggregates multiple pages and
stores them together as a chunk, improving I/O efficiency.

4.2 Compute-I/O Overlapping

LMCACHE’s data movement often happens in parallel to
LLM inference computation. For example, during decod-
ing, a KV cache is computed while being stored to storage
devices at the same time. Naive data movement operations
can block the LLM inference computations, or vice versa.
LMCACHE employs multiple optimizations aiming for over-
lapping LLM inference computations with I/O.

Layer-wise pipelining: LMCACHE overlaps KV cache
transfers with inference computation through layer-wise
pipelining. Specifically, it assigns separate CUDA streams
for inference computation and data movement within each
layer. For example, before performing inference on the first
layer, its KV cache is loaded into the GPU buffer and trans-
formed into pages. While the first layer is running inference,
the KV cache for the second layer is asynchronously fetched
into the buffer and similarly transformed. Note that the sec-
ond layer’s KV cache loading is happened after the first
layer’s KV cache is put into the right paged memory. This
design ensures that only a fixed-size GPU buffer—whose
size is a single layer’s KV cache—is required, while en-
abling overlapping between data transfer and computation.

Asynchronous compute & prefetch: In many scenarios,
there is a time gap between when the inference scheduler
admits a query and when the query’s KV cache is actually
needed for inference. For example, if 100 queries arrive
simultaneously but the inference engine can only process 50
in parallel, the remaining 50 must wait in the queue before
their inference begins. LMCACHE exploits this idle inter-
val to prefetch the queued queries’ KV cache from slower
storage tiers into faster ones (e.g., from remote disk to local
CPU memory). As a result, when the actual inference com-
putation starts, the required KV cache can be loaded directly
from faster-tier storage, significantly reducing loading de-



LMCache: An Efficient KV Cache Layer for Enterprise-Scale LLM Inference

lay. LMCACHE allows users to configure the target tier for
prefetching based on their own needs in latency SLO and
resource constraints.

Process separation: Co-locating LMCACHE ’s data move-
ment with the inference engine in a single process intro-
duces 5%–10% latency overhead due to CPU resource con-
tention. To eliminate this overhead, LMCACHE decouples
data movement into a separate process, isolating it from
the inference computation process. Additionally, process
separation also enables memory sharing across multiple
inference engine instances. When data movement is co-
located with computation, each inference instance maintains
its own CPU memory pool, so instances cannot access one
another’s KV cache without inter-process communications.
By contrast, a standalone data movement process manages
a unified CPU memory pool, allowing multiple inference
instances to store and load KV cache from the same pool,
thereby improving efficiency and reducing redundancy.

4.3 Minimum Data Copy

A naive implementation of KV cache movement would cre-
ate additional copies of data at each transfer step, especially
when dealing with heterogeneous storage types, leading to
redundant memory usage and unnecessary overhead. LM-
CACHE avoids this by maintaining only the minimum re-
quired copies.

Zero-Copy Operations: When transferring KV cache to re-
mote storage or another GPU instance (e.g., in disaggregated
prefill), LMCACHE minimizes data duplication through a
reference counter. Specifically, when KV cache is written
to multiple destinations—such as local CPU memory, local
disk, or remote disk—LMCACHE increments a reference
counter for the shared data instead of creating new copies.
Each completed write decrements the counter, and once the
count reaches zero, the data is released. This design ensures
that data is shared across concurrent write operations with-
out unnecessary replication, thus reducing memory pressure
and improving efficiency. This technique is simlar to PCB
counter in operating systems (Strecker, 1978).

Dynamic Offloading: Modern inference engines such
as vLLM maintain a pool of free pages in GPU memory,
i.e.,, pages whose KV cache is not currently used by active
queries. Instead of duplicating all free pages to CPU mem-
ory, LMCACHE duplicates only a subset. This mechanism
is implemented using three pointers:

• Start pointer: the start address of the free-page region
in GPU memory.

• Current pointer: the index of the free pages that have
already been offloaded to CPU memory.

Free pages

(a) State #1

Least recently used

Start
Current

End

To be duplicated

Free pages

Least recently used

Current End

To be
duplicated

Start

Duplicated

(b) State #2

Free pages

Least recently used

Current End

To be
duplicated

Start

Duplicated

(b) State #3

Allocated

Free pages

Least recently used

Current
End

Start

Duplicated

(b) State #4

Allocated

Figure 4. Illustration of dynamic offloading in LMCACHE.

• End pointer: the end address of the free pages that are
scheduled to be offloaded.

As illustrated in Figure 4, dynamic offloading has four pos-
sible states:

• State #1 (Initialization): the start and current pointers
overlap. The region between the start/current pointers
and the end pointer marks the pages pending duplication.

• State #2 (In-progress): the current pointer moves to-
ward the end pointer. Pages between the start and current
pointers have already been offloaded to CPU memory.

• State #3 (Query Arrival): when new queries acquire
some of the free pages, the end pointer is moved forward
by the number of allocated pages. This ensures sufficient
GPU memory is available for future active queries that
need to acquire free pages.

• State #4 (Steady state): the current pointer overlaps
with the end pointer, indicating that all scheduled pages
have been duplicated.

Note that if a query attempts to allocate pages beyond the
current pointer, the allocation must stall until the current
pointer moves right enough to cover the required pages.
Thus, a key trade-off in this design is that: the number of du-
plicated pages—i.e.,, the region defined by end pointer
{ start pointer—between GPU and CPU memory.
A smaller duplication window reduces the duplication ratio



LMCache: An Efficient KV Cache Layer for Enterprise-Scale LLM Inference

Function name Description
get num new matched tokens(query) → matched tokens Returns the number of cache-hit tokens found in LMCACHE ’s

backend.
update state after alloc(query, blocks, num external blocks) Updates whether a query needs to transfer KV cache from

LMCache’s backend.
build connector meta(scheduler output) → kv connector metadata Builds metadata for KV cache transfers between LMCache’s

backend and GPU memory, including GPU memory addresses
for KV cache pages.

start load kv(kv pointers) Starts loading KV cache from lower-tier storage into GPU
memory before LLM inference begins.

wait load kv(kv pointers, layer id) Synchronizes on KV cache loading to ensure data is available
when computation requires it.

start store kv(kv pointer) Starts offloading KV cache to lower-tier storage after computa-
tion.

wait store kv(kv pointer, layer id) Synchronizes on KV cache storing to ensure the KV cache for
the current layer is offloaded.

Table 2. Functions in LMCACHE’s connector.

but increases the likelihood of allocation stalls. For instance,
if only one page is duplicated and an inference query re-
quires three pages, the query must wait until the current
and end pointers advance by two additional pages. On the
other hand, if three pages are duplicated, the same query
can proceed immediately without stalling, though at the cost
of higher duplication ratio.

5 STANDARDIZED INTERFACE FOR
CONNECTING THE KV CACHING LAYER
AND INFERENCE ENGINE

Modern LLM inference engines, such as vLLM and
SGLang, evolve rapidly to support newly released mod-
els with diverse architectures. For example, in 2025, an
average of 15–20 new models are released each week. Sup-
porting these new architectures often requires non-trivial
modifications to inference engines, such as adding support
for Sliding Window Attention or Multi-Head Latent Atten-
tion. These code changes frequently alter how KV cache is
managed internally, making it infeasible for LMCACHE to
adapt in an ad-hoc manner.

To address this challenge, LMCACHE introduces a standard-
ized KV cache connector interface that decouples KV cache
management from the inference engine backend. This de-
sign ensures that LMCACHE remains compatible regardless
of how the underlying inference engine evolves.

Concretely, in vLLM, LMCACHE integrates through two
key interfaces: 1) the scheduler, where the number of pre-
fill tokens directly influences scheduling decisions and are
changed by LMCACHE (i.e., if there is cache hit in LM-
CACHE, the number of tokens that need to be newly prefilled
changes); and 2) the model runner, where inference com-
putation occurs, and where KV cache loading and storing
must be performed before and after execution.

The remainder of this section lists all the interfaces in Ta-
ble 2, discusses the design for important APIs, and then
traces how a query interacts with these interfaces end-to-
end.

The interfaces listed in Table 2 form the foundation of LM-
CACHE ’s KV cache loading and storage across lower-tier
storage. Among them, the first three interfaces are imple-
mented within the vLLM scheduler, where they prepare the
necessary metadata based on the number of matched tokens
found in LMCACHE ’s KV cache backend. The remaining
four interfaces reside in the model runner, which is respon-
sible for executing the actual KV cache transfers between
the inference engine and LMCACHE ’s KV cache backend.

Putting it together, when a query comes in, the sched-
uler first calls get num new matched tokens which
queries LMCACHE to see cache hit tokens in the back-
end. Then the update state after alloc function
decides whether each page in vLLM needs to be loaded
from external storage backend based on matched tokens
information from LMCACHE. If the cache hit tokens are
greater than zero, build connector meta function is
called to prepare necessary metadata to load or store KV
cache from storage devices.

Once the query reaches the model runner, in the case of
layerwise pipelining, start load kv is called to start
loading KV cache of the first layer to GPU memory. Then
before each layer’s LLM inference computation starts,
wait load kv is called to synchronize the KV cache load-
ing for this layer, and starts the KV cache loading for the
next layer. After each layer’s inference computation, in
the layerwise case, wait store kv is called to wait until
the KV cache for the previous layer has finished storing,
and then calls start store kv to start the storing of KV
cache for the newly generated KV cache layer.

In the case of non-layerwise pipelining, before the first



LMCache: An Efficient KV Cache Layer for Enterprise-Scale LLM Inference

layer’s LLM inference starts, start load kv is called
to load the entire KV cache to GPU memory in a blocking
manner. LLM inference will happen after the KV cache
is put to the right GPU memory paged addresses. Then
after the LLM inference has done for the current scheduling
iteration, start store kv is called store the generated
KV cache to lower-tier storage synchronously.

6 CONTROLLER INTERFACES

There are many scenarios where higher-level applications
need to see KV cache locations and operate on that. For
example, query routing can benefit from knowing where
the largest number of prefix cache hit tokens is at. To sup-
port such use cases, LMCACHE exposes APIs, as shown in
Table 3, for querying and manipulating KV cache, such as
locating cached entries or migrating them across instances.

The KV cache controller in LMCACHE consists of two com-
ponents: a centralized manager and per-instance workers.
Incoming controller queries are handled by the centralized
manager, which dispatches the appropriate operations to
workers running within each LMCACHE instance. The re-
mainder of this section illustrates how to use the controller
interfaces through several example applications.

KV cache–aware routing: In this case, higher-level query
routers would like to direct queries to instances with the
largest number of prefix cache hits. The router first calls
lookup(tokens), where the centralized manager dis-
patches the lookup queries to individual LMCACHE in-
stances, to identify the instances containing matching pre-
fix tokens, then invokes query ip(instance ids) to
map instance ids to IP addresses. Finally, the query is for-
warded to the IP with the highest number of hits.

KV cache migration: When an instance holding
KV cache fails or load balancing is required, the KV
cache may need to be migrated across instances. The
move(source, destination, tokens) interface
moves the KV cache corresponding to tokens from the
source instance to the destination.

KV cache clearance: Applications may clear cache
when switching models or reclaiming memory. The
clear(tokens, instance, location) function
removes the KV cache corresponding to tokens stored at
a specific storage location (e.g., GPU memory or CPU
memory) within the given instance.

Pinning KV cache in GPU memory: Some contexts, such
as system prompts in chatbot applications, should remain
in GPU memory for fast access. The pin(instance,
location, tokens) function pins the specified KV

cache in the chosen storage tier (GPU memory) of the given
instance.

There are other more advanced interfaces users
can call to manipulate the KV cache, such as the
compress(tokens, instance, location,
compression method) function which compresses
KV cache stored in a specific location in a LMCACHE
instance with compression method so that the KV
cache takes smaller amount of space in storage. Users can
freely call these interfaces to explicitly manage the KV
cache in their own applications based on their needs.

7 EVALUATION

7.1 Setup

We evaluate LMCACHE under three different scenarios, as
shown in Table 4. The three scenarios are representative
setups that are commonly used by the users of LMCACHE.

Models: We compare LMCACHE against baseline
solutions on popular open source models adopted by indus-
try: meta-llama/Llama-3.1-8B-Instruct,
meta-llama/Llama-3.1-70B-Instruct,
Qwen/Qwen2.5-Coder-32B-Instruct,
Qwen/Qwen3-Coder-480B-A35B-Instruct-FP8,
Qwen/Qwen2.5-72B-Instruct.

Datasets: LMCACHE is evaluated on several datasets,
including emulated multi-round question answering, long
context question answering from LongBench (Bai et al.,
2024), and random dataset from vLLM official benchmark-
ing script (Kwon et al., 2023c).

Hardware: For single-node evaluation, we run LMCACHE
on an 8×H100 server provided by GMI Cloud (GMI Cloud,
2025). Because different models require varying numbers
of GPUs to be served, we allocate the minimum number of
H100 GPUs necessary to successfully start each model in
our evaluation. For multi-node evaluation, we use the same
number of GPUs as in the single-node setup and configure
a remote storage backend that leverages CPU memory for
KV cache storage. For PD disaggregation, the prefiller and
decoder instances are both set up with the number of GPUs
as in single-node evaluation, and the prefiller and decoder
instances are connected with NVLink.

Metrics: For each experiment, we show both time-to-first-
token (TTFT), which is the prefill delay, and inter-token-
latency (ITL), which is the average delay between the gener-
ation of two consecutive output tokens. For component-wise
analysis which breaks down the delay for CPU offloading or
PD disaggregation, we report the delay for each component
separately.



LMCache: An Efficient KV Cache Layer for Enterprise-Scale LLM Inference

Interface Description
lookup(tokens) → {instance id: hit tokens} Returns the instance names of KV caches containing prefix-

match tokens with the given token list.
query ip(instance ids) → IP Returns the IP addresses for the corresponding instance ids
move(source, destination, tokens) Moves the KV cache of the given token list from a source instance

to destination.
clear(tokens, instance id, storage device) Clears the KV cache for corresponding tokens from the

storage device in instance.
pin(tokens, instance, storage device) Pins the KV cache for corresponding tokens at the

storage device in instance.
compress(tokens, instance, storage device, compression method) Compresses the KV cache for the corresponding tokens with a

compression method and store it at the storage device in
instance.

Table 3. Functions in LMCACHE’s connector.

0

1

2

3

TT
FT

 (s
)

Llama3.1-8B Llama3.1-70B Qwen2.5-72B-Instruct Qwen2.5-Coder-32B Qwen3-Coder-480B

2 4
0.0

0.1

0.2

IT
L 

(s
)

2.5 5.0 7.5 1 2 3 2 4 2.5 5.0
QPS

LMCache Naive vLLM Commercial 1 Commercial 2

Figure 5. Single-node evaluation results.

2 4 6
QPS

0.25

0.50

0.75

TT
FT

 (s
)

2 4 6
QPS

10

20

30

IT
L 

(m
s)

LMCache Naive vLLM

Figure 6. Real-trace evaluation results.

Baselines: We compare LMCACHE with several baselines,
including 1) vLLM with prefix caching, which implements
prefix caching, but only keeps limited amount of KV cache
inside GPU memory; 2) commercial offering A, B, and
C, which provide dedicated endpoint service that reserves
GPUs for users to run a user-defined model.

Scenario Acronym Single-node /
Multi-node

Network
Medium

Real-world
Examples

CPU Offload Single-node N.A. Single-node
CPU Offloading

Central Storage Single-node Ethernet Centralized
Storage Server

PD Single-node NVLink PD
Disaggregation

Table 4. Evaluation scenarios setup.

7.2 Single-node CPU Offloading

We first evaluate LMCACHE on the CPU Offload scenario
as in Table 4. In this experiment, we use multi-round Q&A
workloads that emulate a typical chatbot-based document
analysis scenario. By default, each LLM query contains 10K
tokens, consisting of a document (roughly a 12-page PDF)
used as context and a unique short question. Llama-3.1-
8B-Instruct model takes 20K tokens as input, since smaller



LMCache: An Efficient KV Cache Layer for Enterprise-Scale LLM Inference

0

10

TT
FT

 (s
)

Llama3.1-70B

0

10

20

Qwen2.5-72B-Instruct

0

2

Qwen2.5-Coder-32B

0

5

Qwen3-Coder-480B

1 2 3
0.0

0.2

0.4

IT
L 

(s
)

1 2 3
0.0

0.2

0.5 1.0
0.0

0.1

1 2 3
0.0

0.1

QPS

LMCache Naive vLLM Commercial 1

Figure 7. Remote backend evaluation results.

1 2
0.0

0.5

1.0

C
D

F

Llama3-8B

1.0 1.5

Llama3-70B

1 2

Qwen-32B

1 2

Qwen-72B

0.0 0.5

0.96

0.98

1.00

C
D

F

0.0 0.5 0.0 0.5 0.0 0.5 1.0

TTFT (s)

ITL (s)

LMCache naive vLLM

Figure 8. TTFT and ITL CDF comparison for PD.

models are generally better can handle more and longer
queries. The LLM output is a short answer of 100 tokens at
max. The chat session begins with 40 users, and additional
users join according to a specified arrival rate (QPS). We
set the maximum CPU memory LMCACHE can offload KV
cache to 500 GB.

As shown in Figure 5, LMCACHE consistently outperforms
all alternatives in both TTFT and ITL. For instance, under
low QPS (e.g., QPS = 1), LMCACHE achieves 2.3–14×
higher query processing rate (i.e., throughput), at the same
TTFT, than the strongest baseline across five evaluated mod-
els. In terms of ITL, LMCACHE also outperforms the base-
lines, as they incur a long delay before generating the first
token, which in turn causes subsequent token generation to

be queued. For Qwen3-Coder-480B, commercial options #1
and #2 do not provide support for hosting the model.

Understanding LMCACHE’s gains: LMCACHE outper-
forms baselines for several reasons. Compared with naı̈ve
vLLM prefill, which caches KV data only in GPU memory,
LMCACHE leverages CPU offloading. Since CPU memory
can hold far more KV cache than GPU memory, LMCACHE
achieves significantly higher cache hit ratios. With its ef-
ficient CPU-to-GPU loading scheme, cached data can be
fetched quickly to accelerate inference. Our comparison
with closed-source commercial alternatives is conducted in
a black-box manner since their internal implementations
are not publicly available. From the end-to-end results, we
hypothesize that Commercial Option #1 lacks a KV cache



LMCache: An Efficient KV Cache Layer for Enterprise-Scale LLM Inference

5 10 15

5

10

Tp
ut

 (Q
P

S
)

5 10 15
0

1

2

Av
g 

TT
FT

 (s
)

5 10 15

5

10

Av
g 

La
t. 

(s
)

Request Rate (QPS)

SGL w/ LMCache
SGL w/ CPU Offloading

SGL

Figure 9. Comparing to SGLang CPU Offloading result.

offloading mechanism to secondary storage. In contrast,
Commercial Option #2 likely supports KV cache offloading
to secondary storage, yet its performance is still worse than
LMCACHE.

7.3 Centralized Storage Server

Next, we run LMCACHE for KV cache sharing through
a centralized remote server, that is connected to the GPU
instance with a bandwidth of 15 Gbps, following the setup
of central storage in Table 4. For this experiment, we
evaluate using the TriviaQA dataset from LongBench (Bai
et al., 2024), a widely adopted benchmark for long-context
evaluation. We follow the official vLLM benchmarking
scripts (Kwon et al., 2023c), which generate inference
queries according to a Poisson distribution at a specified
QPS.

As shown in Figure 7, LMCACHE consistently outperforms
all baselines across different QPS levels, providing 1.3–3×
improvement in inference throughput. The improvement
comes from the fact that the remote backend can store far
more KV cache than CPU memory, thereby achieving higher
cache hit ratios.

We note, however, that loading KV cache from the remote
backend introduces greater latency than loading from CPU

0
2
4
6
8

10

R
eq

ue
st

 ID

LMCache (Async IO)

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time (s)

0
2
4
6
8

10

R
eq

ue
st

 ID

vLLM (Sync IO)

Prefill Decode Loading

Figure 10. With request asynchronization, LMCACHE overlaps
KV cache loading and inference computation (either prefill or
decode).

0 1 2 3 4
Time (s)

LMCache

naive
vLLM

3.68s

4.47s

Prefill Decode Transmit

Figure 11. Latency breakdown of PD.

memory, since the remote backend has a much lower band-
width. As a result, the loading delay may even surpass the
prefill delay, particularly when the input context is short
or model is small, as prefilling is too fast in such cases—a
scenario that we will demonstrate later in 7.7.

7.4 PD disaggregation

In this experiment, we evaluate the performance in a PD
disaggregation setting. Here, we compare LMCACHE with
vLLM’s native PD disaggregation with the official bench-
marking script for random input and output workload. We
use 8K tokens input and 200 tokens output. As shown in
Figure 8, it presents the 95th percentile TTFT for both LM-
CACHE and vLLM’s native PD disaggregation, showing
that LMCACHE achieves significantly better tail latency. In
terms of mean TTFT, LMCACHE also greatly outperforms



LMCache: An Efficient KV Cache Layer for Enterprise-Scale LLM Inference

vLLM native PD disaggregation. Specifically, LMCACHE
reduces mean TTFT by 1.53–1.84×, and reduces mean ITL
by 1.12–1.66×, across the four models.

The performance gains of LMCACHE over the baseline
stem from its more efficient design for PD disaggregation.
Specifically, LMCACHE copies each chunk of the KV cache
(generated during chunked prefill) to a buffer in the GPU
memory of the prefiller instance, and then transfers it to
the corresponding buffer on the decoder instance. Once
received, the KV cache is copied into the paged memory of
the decoder instance.

In contrast, vLLM’s native PD disaggregation sends the
paged KV cache generated by the prefiller directly to the
decoder, using NIXL’s memory copy function. This func-
tion takes as input the memory addresses of the KV cache
pages on the prefiller side and copies them to the destination
addresses on the decoder side. However, when the paged
memory for the KV cache is scattered across the prefiller’s
GPU memory, the transfer is performed in a page by page
manner, which leads to bandwidth underutilization, as dis-
cussed in §4.

7.5 Real-trace Driven Evaluation

We also evaluate LMCACHE on a real production trace pro-
vided by company F 4. The trace includes query arrival
timestamps and actual multi-round chat inputs. Notably,
later rounds within the same user session often reuse conver-
sation history from earlier rounds, resulting in prefix reuse.
On average, the inputs in the trace are about 4K tokens long.

Since we do not have access to company F ’s proprietary
models, we replay the trace using the Sao10K/L3-8B-
Lunaris-v1 model. To make the experiment tractable, we
stretch the original trace which lasts for several days and ap-
ply random sampling so that the workload we run completes
within one hour.

As shown in Figure 6, LMCACHE consistently outperforms
naive vLLM on the real trace on different QPS, reducing
both TTFT and ITL, demonstrating its effectiveness in real-
world settings. Note that for lower QPS from 2 to 5, LM-
CACHE still outperforms naive vLLM by 25%, while when
QPS is 6, LMCACHE has improvement of 49% compared
to naive vLLM.

7.6 Component-wise Evaluation

To further understand the gain brought by LMCACHE, we
also perform component-wise analysis to break down the
delay of each component in the end-to-end system.

PD disaggregation: Figure 11 shows the latency break-

4Anonymized due to NDA.

Method Achieved Bandwidth

LMCache 400 Gbps
vLLM’s Native CPU Offloading 88 Gbps

Table 5. LMCACHE achieves much higher loading bandwidth
when loading KV cache from CPU memory, compared to vLLM’s
native CPU offloading.

down of LLM inference, including both prefill and decode
computation, as well as the transmission of KV cache be-
tween prefiller and decoder instances. The prefill and decode
computation times are the same for LMCACHE and vLLM’s
native PD disaggregation. However, as discussed in §7.4,
vLLM’s native design transmits KV cache at a much finer
granularity, which results in bandwidth underutilization. In
contrast, LMCACHE employs a more efficient KV cache
transfer mechanism, enabling significantly faster transmis-
sion and thereby reducing the overall end-to-end delay in
PD disaggregation.

CPU offloading: In Table 7.6, we perform an ablation
study to test the achieved loading bandwidth from CPU
for LMCACHE and vLLM’s native CPU offloading. The
reason LMCACHE achieves higher transfer bandwidth than
vLLM’s native CPU offloading is due to the transfer gran-
ularity. While native CPU offloading performs data move-
ment page by page, LMCACHE transfers data chunk by
chunk. Each transfer operation triggers a CUDA memory
copy, which involves preparing metadata beforehand and
sending a completion signal afterward. These per-transfer
operations add overhead to every memory copy kernel. By
transferring larger chunks of data per copy, LMCACHE
reduces the overall overhead, resulting in a much higher
effective bandwidth.

Asynchronous Compute: We also show the benefit of
LMCACHE’s asynchronous compute in terms of reducing
end-to-end delay. Figure 10 shows the timeline of queries
loading and inference computation. The figure is drawn
from the middle of a longer run for illustration purpose. As
shown in the figure, without query asynchronization, pre-
fill/decode computation and loading happen sequentially.
With query asynchronization, the prefill/decode computa-
tion can overlap with KV cache loading, which reduces the
end-to-end delay by 1.46×.

7.7 Sensitivity Study

We also perform several sensitivity evaluation to see how
LMCACHE’s delay changes under different context lengths
and different types of remote backends.

Impact of context lengths: Figure 12 shows the prefill de-



LMCache: An Efficient KV Cache Layer for Enterprise-Scale LLM Inference

0 200 400
Context Length (K Token)

0

20

40
La

te
nc

y 
(s

)
Prefill
32 Gbps

64 Gbps
128 Gbps

Figure 12. Impact of different context lengths.

lay on B200 machines and the loading delay under different
network bandwidths. When the network bandwidth is low
(i.e., 32 Gbps), LMCACHE’s KV cache loading outperforms
naive prefilling only when the input context length exceeds
256K tokens. In contrast, when the bandwidth is higher
(i.e., 64 or 128 Gbps), LMCACHE’s loading consistently
achieves lower delay than naive prefilling across all con-
text lengths. These results suggest that LMCACHE’s KV
cache loading should be adaptive: under low bandwidth,
loading should be enabled only when the context length
surpasses the crossover point where loading becomes faster
than prefilling.

7.8 SGLang Results

Although our primary evaluation uses vLLM, we also evalu-
ate LMCACHE integrated with SGLang. Figure 9 reports
results for Qwen3-32B served on two H100 GPUs (TP=2)
with LMCACHE ’s CPU offloading enabled. Compared
to SGLang without CPU offloading, LMCACHE achieves
higher throughput and lower mean TTFT and mean end-to-
end latency. Compared to SGLang’s native CPU offloading,
LMCACHE achieves comparable performance. These re-
sults confirm that LMCACHE is also effective on another
inference engine. Although SGLang’s native CPU offload-
ing achieves performance comparable to LMCACHE ’s CPU
offloading on SGLang, it lacks a distributed storage back-
end capable of efficiently offloading data across a hierarchi-
cal set of storage devices, such as local disks and remote
CPU/disk resources.

8 REAL-WORLD LESSONS AND
EXPERIENCE

8.1 Scaling KV Cache Storage and Offloading

One clear trend in the adoption of LMCACHE in production
systems is that more and more KV cache needs to be stored,
definitely beyond the number that can be stored in GPU
memory. Early deployments kept all KV caches in GPU

memory, but long contexts and multi-user workloads may
quickly exhaust GPU memory. Thus, many companies
now need to offload KV data to CPU RAM, CPU memory
pooling, or even disks when needed. This prevents evicting
useful cache entries — without offloading, a follow-up query
would trigger full prefill of the same input context, often
long contexts, which greatly prolongs TTFT.

Interestingly, some teams, including company R, have ex-
perimented with remote storage devices. A remote data
fetch is orders of magnitude slower than GPU memory ac-
cess, yet real-world tests have shown it can still yield both
speedups and cost savings. Retrieving previously computed
KV cache over the network can be faster than recomput-
ing them on loaded GPUs, with LMCACHE’s KV cache
loading optimizations (§4). While the overhead of loading
KV cache from remote is large, it can be pipelined with
inference computations, either prefilling requests that do
not have cache-hit tokens or decoding computations. These
experiences show that even slow and cheap storage can be
leveraged to efficiently store and load KV caches.

Another technique used in production is the combination
of CPU offloading and PD disaggregation. At company
T, on the prefiller side, the KV cache is not only sent to
the decoder side, but is also offloaded to the CPU memory
of prefiller instance to achieve both the benefit of CPU
offloading and PD disaggregation.

8.2 Emerging Use Cases and Surprising Outcomes

While chatbots were one of the first obvious beneficial usage
scenarios of KV cache reuse, new use cases are rapidly
emerging. Recently, large-scale recommendation systems
from company L and company M have also adopted LLMs
as the recommender model and becomes an important use
case of KV cache reuse. In these systems, LLMs are used
as the embedding models to prefill the contexts, without
generating tokens, and are frequently reused by different
queries of the same user. Furthermore, the contexts are often
very long. Caching those KV cache can directly eliminate
the expensive prefill phase, thus is a perfect use case of
LMCACHE.

Although multi-round chat has long been a canonical use
case for KV cache reuse, real-world deployments have re-
vealed several important insights. Many systems initially
adopted sliding context windows to fit more tokens into
limited GPU memory during inference. However, this ap-
proach often degrades generation quality by discarding use-
ful history and reduces prefix cache hit ratio, since truncated
contexts are no longer prefixes. Deployment experiences at
Company T and F demonstrate that keeping the full conver-
sation history, while offloading KV caches to larger memory
tiers, is a more effective practice. By avoiding truncation,
the system achieves significantly higher cache hit rates on



LMCache: An Efficient KV Cache Layer for Enterprise-Scale LLM Inference

shared prefixes, leading to less GPU memory usage per re-
quest. Moreover, in production environments, companies
have observed that prefix cache hit rate is far higher than
they expected.

The experience from Company B’s adoption shows that in-
dustry users are accepting lossy optimizations, such as KV
cache compression, for better system performance. Espe-
cially, in open-ended chatbot applications, where there is
no single “correct” answer, using compressed KV cache
(e.g., quantized KV cache) may not harm the user experi-
ence but can dramatically reduce memory usage and I/O
time. Even in finance companies, teams found that slight
differences from using a compressed KV cache are tolerable
if the overall system throughput improves.

8.3 Integration and Deployment Challenges

Deploying a caching layer in production LLM inference sys-
tems has its own practical challenges and lessons. One key
lesson we found in the adoption of LMCACHE is that many
companies preferred containerized environments, such as
Docker images, when deploying the caching layer into pro-
duction, as they often do not go into the source code of
LMCACHE.

Another important aspect in the caching layer for LLM in-
ference is fault tolerance and transparency. Because the
caching layer sits beneath the inference engines and is sup-
posed to be invisible to end users, robustness is important.
Many companies stressed that if the cache system fails or
underperforms, it should not bring down the model service.
For instance, LMCACHE incorporates fault-tolerant KV
cache retrieval: if errors occur during retrieval, LMCACHE
reports which portions of the KV cache were successfully
read, ensuring the inference engine does not break due to
the unsuccessful read of KV cache and the correctness of
generation is preserved.

We also observed a growing demand for a clean separation
between the model serving engine and the caching engine.
Many storage companies, such as company I, R, C, and W,
have explicitly asked for decoupling the KV cache manage-
ment and the core inference code, since they want to touch
as minimum core inference logic as possible. Although LM-
CACHE does not solve this for now, the trend is clear: an
LLM inference engine is pairing with a variety of external
KV cache management services.

At last, we found that ensuring compatibility between LM-
CACHE and emerging inference frameworks was easier than
expected. LMCACHE was originally designed and devel-
oped on top of vLLM. However, integrating LMCACHE
with other frameworks, such as SGLang, has also been
straightforward, as long as they adopt the paged attention
mechanism. Looking ahead, we expect that LMCACHE will

be equally easy to integrate with other inference frameworks
based on paged attention.

8.4 Adoption, Lessons Learned, and Future Outlook

Our journey began as an academic prototype in the summer
of 2024. At that time, KV caching was a niche concept
mostly discussed in a few research papers. But by spring
2025, the landscape had changed — KV cache became a key
technique in industry for improving the efficiency in LLM
inference. The adoption of LMCACHE truly exploded in
early 2025, with numerous companies starting to collaborate
and use.

Interestingly, although LMCACHE has initially been an aca-
demic prototype, we found that LMCACHE has much more
industry users than academia ones. One potential reason is
that there is lack of an easy set of programmable interfaces.
As a concrete example, a rich set of research literatures
explore dropping tokens from KV cache for compressing
it into smaller tensors. However, it is non-trivial to im-
plement token dropping in LMCACHE, since LMCACHE
assumes the number of tokens that is input to and output
of LMCACHE should be the same. Furthermore, any inter-
mediate states in the attention module are hidden from the
LMCACHE’s side, so research works that need to access or
modify the attention states are hard to be implemented with
LMCACHE.

Finally, we learned that programming languages for high
performance are not always the best fit for building LLM
inference infrastructure. Early on, some organizations (e.g.,,
company R and I) assumed that KV cache management must
be implemented in Rust or C++ to achieve high efficiency.
In contrast, we developed LMCACHE in Python, which
turned out to be a more effective choice. Python not only
simplifies integration with existing inference frameworks
but also lowers the barrier for community contributions,
enabling rapid feature development and iterations. That said,
CUDA-based implementations are still essential for certain
high-performance data loading modules within LMCACHE.

9 CONCLUSION AND OUTLOOK

This paper presented LMCACHE, the first open-source and
most widely adopted production-ready KV caching layer for
enterprise-scale LLM inference. By treating KV cache as
a first-class data structure rather than an internal byproduct
of inference, LMCACHE transforms LLM engines from iso-
lated token processors into a distributed ecosystem of com-
pute and storage. Evaluation across diverse workloads and
models demonstrates that LMCACHE consistently delivers
significant throughput improvement and latency reduction
compared to both open-source baselines and commercial in-
ference APIs. Beyond performance, LMCACHE has already



LMCache: An Efficient KV Cache Layer for Enterprise-Scale LLM Inference

seen rapid adoption in production environments, where en-
terprises leverage its CPU offloading, hierarchical storage,
and PD disaggregation capabilities to keep low latency and
reduce cost in trillion-token–scale deployments. Real-world
deployments have also revealed new opportunities, such as
KV cache reuse in recommendation systems and lossy com-
pression in open-ended chatbots, underscoring the versatility
of LMCACHE across application domains.

Looking ahead, LMCACHE points to a broader shift: AI-
native data such as KV caches will increasingly serve
as the substrate for scaling LLM inference and agentic
workloads. By establishing KV cache as a standardized
storage and communication medium, LMCACHE lays the
foundation for future systems that treat inference not as iso-
lated sessions but as a persistent, cache-aware computation
fabric. We hope that the design, optimizations, and deploy-
ment lessons presented in this paper will inform the next
generation of LLM infrastructure, where AI-native data,
such as KV caches, is not merely an optimization but a core
primitive for efficient, reliable, and scalable inference.

The source code of LMCACHE is at: https://github
.com/LMCache/LMCache.

10 ACKNOWLEDGEMENT

We would like to thank the LMCACHE community for their
invaluable support and contributions, including Baolong
Mao and Chunxiao Zheng for managing remote connectors,
Martin Hickey for GitHub Infrastructure, Huaizheng Zhang,
Siddhant Ray, Zhuohan Gu and Hanchen Li for writing and
maintaining documentation, Rui Zhang for the deployment
of LMCACHE, Qizheng Zhang and Hussain Mohammad for
insightful feedback.

REFERENCES

Best 44 large language models (llms) in 2025. https://
explodingtopics.com/blog/list-of-llms,
2025. Accessed: 2025-09-18.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai
Tang, Zhidian Huang, Zhengxiao Du, Xiao Liu, Aohan
Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li.
Longbench: A bilingual, multitask benchmark for long
context understanding, 2024. URL https://arxiv.
org/abs/2308.14508.

ByteDance. InfiniStore: Kv cache store for distributed llm
inference. https://github.com/bytedance/I
nfiniStore, 2025. Accessed: 2025-09-10.

Caylent. Prompt caching: Saving time and money in llm
applications. https://caylent.com/blog/pro
mpt-caching-saving-time-and-money-i
n-llm-applications, 2024. Accessed: 2025-09-
18.

Shiyang Chen, Rain Jiang, Dezhi Yu, Jinlai Xu, Mengyuan
Chao, Fanlong Meng, Chenyu Jiang, Wei Xu, and Hang
Liu. Kvdirect: Distributed disaggregated llm inference,
2024. URL https://arxiv.org/abs/2501.1
4743.

Weijian Chen, Shuibing He, Haoyang Qu, Ruidong Zhang,
Siling Yang, Ping Chen, Yi Zheng, Baoxing Huai, and
Gang Chen. IMPRESS: An Importance-Informed Multi-
Tier prefix KV storage system for large language model
inference. In 23rd USENIX Conference on File and Stor-
age Technologies (FAST 25), pages 187–201, Santa Clara,
CA, February 2025. USENIX Association. ISBN 978-1-
939133-45-8. URL https://www.usenix.org/c
onference/fast25/presentation/chen-w
eijian-impress.

DeepSeek AI Contributors. deepseek-ai/3fs: A high-
performance distributed file system for ai training and
inference workloads. https://github.com/dee
pseek-ai/3FS, 2025a. GitHub repository, MIT Li-
cense.

KServe Contributors. kserve/kserve: Standardized dis-
tributed generative and predictive ai inference platform
for scalable, multi-framework deployment on kubernetes.
https://github.com/kserve/kserve, 2025b.
GitHub repository, Apache-2.0 license.

Databricks Research. How long should you train your lan-
guage model? https://www.databricks.com
/blog/how-long-should-you-train-you
r-language-model, 2024. Accessed: 2025-09-18.

https://github.com/LMCache/LMCache
https://github.com/LMCache/LMCache
https://explodingtopics.com/blog/list-of-llms
https://explodingtopics.com/blog/list-of-llms
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2308.14508
https://github.com/bytedance/InfiniStore
https://github.com/bytedance/InfiniStore
https://caylent.com/blog/prompt-caching-saving-time-and-money-in-llm-applications
https://caylent.com/blog/prompt-caching-saving-time-and-money-in-llm-applications
https://caylent.com/blog/prompt-caching-saving-time-and-money-in-llm-applications
https://arxiv.org/abs/2501.14743
https://arxiv.org/abs/2501.14743
https://www.usenix.org/conference/fast25/presentation/chen-weijian-impress
https://www.usenix.org/conference/fast25/presentation/chen-weijian-impress
https://www.usenix.org/conference/fast25/presentation/chen-weijian-impress
https://github.com/deepseek-ai/3FS
https://github.com/deepseek-ai/3FS
https://github.com/kserve/kserve
https://www.databricks.com/blog/how-long-should-you-train-your-language-model
https://www.databricks.com/blog/how-long-should-you-train-your-language-model
https://www.databricks.com/blog/how-long-should-you-train-your-language-model


LMCache: An Efficient KV Cache Layer for Enterprise-Scale LLM Inference

Dayou Du, Shijie Cao, Jianyi Cheng, Luo Mai, Ting Cao,
and Mao Yang. Bitdecoding: Unlocking tensor cores
for long-context llms with low-bit kv cache, 2025. URL
https://arxiv.org/abs/2503.18773.

Bin Gao, Zhuomin He, Puru Sharma, Qingxuan Kang,
Djordje Jevdjic, Junbo Deng, Xingkun Yang, Zhou Yu,
and Pengfei Zuo. Cost-efficient large language model
serving for multi-turn conversations with cachedattention,
2024. URL https://arxiv.org/abs/2403.1
9708.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei
Han, and Jianfeng Gao. Model tells you what to discard:
Adaptive kv cache compression for llms, 2024. URL
https://arxiv.org/abs/2310.01801.

In Gim, Guojun Chen, Seung-Seob Lee, Nikhil Sarda,
Anurag Khandelwal, and Lin Zhong. Prompt cache: Mod-
ular attention reuse for low-latency inference. In Phillip B.
Gibbons, Gennady Pekhimenko, and Christopher De Sa,
editors, Proceedings of the Seventh Annual Conference
on Machine Learning and Systems, MLSys 2024, Santa
Clara, CA, USA, May 13-16, 2024. mlsys.org, 2024. URL
https://proceedings.mlsys.org/paper_
files/paper/2024/hash/a66caa1703fe34
705a4368c3014c1966-Abstract-Conferenc
e.html.

GMI Cloud. Gmi cloud: Gpu cloud solutions for scalable
ai & inference. https://www.gmicloud.ai/,
2025. Provides high-performance GPU infrastructure
and services for AI training, inference, and deployment.
Founded in 2023, based in Mountain View, CA. Retrieved
September 15, 2025.

Simon Jegou, Maximilian Jeblick, Alessio Devoto, Jiwei
Liu, and David Austin. Kvpress: Efficient kv cache
compression for long-context llms, 2024. URL https:
//github.com/NVIDIA/kvpress. Version 1.2.0.

Chao Jin, Zili Zhang, Xuanlin Jiang, Fangyue Liu, Xin
Liu, Xuanzhe Liu, and Xin Jin. Ragcache: Efficient
knowledge caching for retrieval-augmented generation,
2024. URL https://arxiv.org/abs/2404.1
2457.

Shuowei Jin, Xueshen Liu, Qingzhao Zhang, and Zhuo-
qing Mao. Compute or load KV cache? why not both?
In Forty-second International Conference on Machine
Learning, 2025a. URL https://openreview.net
/forum?id=WOyOtaO6lQ.

Shuowei Jin, Xueshen Liu, Qingzhao Zhang, and Zhuo-
qing Mao. Compute or load KV cache? why not both?
In Forty-second International Conference on Machine
Learning, 2025b. URL https://openreview.net
/forum?id=WOyOtaO6lQ.

Wook Kwon et al. Demystifying nccl: An in-depth analysis
of gpu-based collective communication. arXiv preprint
arXiv:2507.04786, 2025. URL https://arxiv.or
g/abs/2507.04786.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng,
Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao
Zhang, and Ion Stoica. Efficient memory management
for large language model serving with pagedattention. In
Proceedings of the 29th Symposium on Operating Sys-
tems Principles, SOSP ’23, page 611–626, New York,
NY, USA, 2023a. Association for Computing Machinery.
ISBN 9798400702297. doi: 10.1145/3600006.3613165.
URL https://doi.org/10.1145/3600006.
3613165.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng,
Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao
Zhang, and Ion Stoica. Efficient memory management for
large language model serving with pagedattention, 2023b.
URL https://arxiv.org/abs/2309.06180.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng,
Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao
Zhang, and Ion Stoica. Efficient memory management
for large language model serving with pagedattention. In
Proceedings of the ACM SIGOPS 29th Symposium on
Operating Systems Principles, 2023c. Software: vLLM.
https://github.com/vllm-project/vllm/
tree/main/benchmarks.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong
Sim. InfiniGen: Efficient generative inference of large lan-
guage models with dynamic KV cache management. In
18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 24), pages 155–172, Santa
Clara, CA, July 2024. USENIX Association. ISBN 978-
1-939133-40-3. URL https://www.usenix.org
/conference/osdi24/presentation/lee.

Junyan Li, Yang Zhang, Muhammad Yusuf Hassan, Talha
Chafekar, Tianle Cai, Zhile Ren, Pengsheng Guo,
Foroozan Karimzadeh, Colorado Reed, Chong Wang,
and Chuang Gan. Commvq: Commutative vector quan-
tization for kv cache compression, 2025. URL https:
//arxiv.org/abs/2506.18879.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows
what you are looking for before generation, 2024. URL
https://arxiv.org/abs/2404.14469.

Jiachen Liu, Jae-Won Chung, Zhiyu Wu, Fan Lai, Myungjin
Lee, and Mosharaf Chowdhury. Andes: Defining and

https://arxiv.org/abs/2503.18773
https://arxiv.org/abs/2403.19708
https://arxiv.org/abs/2403.19708
https://arxiv.org/abs/2310.01801
https://proceedings.mlsys.org/paper_files/paper/2024/hash/a66caa1703fe34705a4368c3014c1966-Abstract-Conference.html
https://proceedings.mlsys.org/paper_files/paper/2024/hash/a66caa1703fe34705a4368c3014c1966-Abstract-Conference.html
https://proceedings.mlsys.org/paper_files/paper/2024/hash/a66caa1703fe34705a4368c3014c1966-Abstract-Conference.html
https://proceedings.mlsys.org/paper_files/paper/2024/hash/a66caa1703fe34705a4368c3014c1966-Abstract-Conference.html
https://www.gmicloud.ai/
https://github.com/NVIDIA/kvpress
https://github.com/NVIDIA/kvpress
https://arxiv.org/abs/2404.12457
https://arxiv.org/abs/2404.12457
https://openreview.net/forum?id=WOyOtaO6lQ
https://openreview.net/forum?id=WOyOtaO6lQ
https://openreview.net/forum?id=WOyOtaO6lQ
https://openreview.net/forum?id=WOyOtaO6lQ
https://arxiv.org/abs/2507.04786
https://arxiv.org/abs/2507.04786
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://arxiv.org/abs/2309.06180
https://github.com/vllm-project/vllm/tree/main/benchmarks
https://github.com/vllm-project/vllm/tree/main/benchmarks
https://www.usenix.org/conference/osdi24/presentation/lee
https://www.usenix.org/conference/osdi24/presentation/lee
https://arxiv.org/abs/2506.18879
https://arxiv.org/abs/2506.18879
https://arxiv.org/abs/2404.14469


LMCache: An Efficient KV Cache Layer for Enterprise-Scale LLM Inference

enhancing quality-of-experience in llm-based text stream-
ing services, 2024a. URL https://arxiv.org/ab
s/2404.16283.

Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray,
Yuyang Huang, Qizheng Zhang, Kuntai Du, Jiayi Yao,
Shan Lu, Ganesh Ananthanarayanan, Michael Maire,
Henry Hoffmann, Ari Holtzman, and Junchen Jiang.
Cachegen: Kv cache compression and streaming for fast
large language model serving, 2024b. URL https:
//arxiv.org/abs/2310.07240.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and Xia
Hu. Kivi: A tuning-free asymmetric 2bit quantization for
kv cache. arXiv preprint arXiv:2402.02750, 2024c.

llm-d Project. llm-d: A kubernetes-native high-performance
distributed llm inference framework. https://gith
ub.com/llm-d/llm-d, 2025. Accessed: 2025-09-
10.

Meta Engineering. Roce networks for distributed ai training
at scale. https://engineering.fb.com/2024/
08/05/data-center-engineering/roce-n
etwork-distributed-ai-training-at-sca
le/, Aug 2024. Accessed: 2025-09-18.

Chengyi Nie, Rodrigo Fonseca, and Zhenhua Liu. Aladdin:
Joint placement and scaling for slo-aware llm serving,
2024. URL https://arxiv.org/abs/2405.0
6856.

NVIDIA Corporation. Nvidia dynamo: A datacenter-scale
distributed inference serving framework. https://gi
thub.com/ai-dynamo/dynamo, 2025. Accessed:
2025-09-10.

NVIDIA Developer Forums. Why is the transfer throughput
low when transferring small size data (gpu host/device
transfers). https://forums.developer.nvidi
a.com/t/why-is-the-transfer-throughpu
t-low-when-transferring-small-size-d
ata-from-host-to-device-or-device-t
o-host/153962, 2020. Accessed: 2025-09-18.

Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka
Shah, Íñigo Goiri, Saeed Maleki, and Ricardo Bianchini.
Splitwise: Efficient generative llm inference using phase
splitting, 2024. URL https://arxiv.org/abs/
2311.18677.

Ruoyu Qin, Zheming Li, Weiran He, Jialei Cui, Feng Ren,
Mingxing Zhang, Yongwei Wu, Weimin Zheng, and Xin-
ran Xu. Mooncake: Trading more storage for less com-
putation — a KVCache-centric architecture for serving
LLM chatbot. In 23rd USENIX Conference on File and

Storage Technologies (FAST 25), pages 155–170, Santa
Clara, CA, February 2025a. USENIX Association. ISBN
978-1-939133-45-8. URL https://www.usenix.o
rg/conference/fast25/presentation/qin.

Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang,
Yongwei Wu, Weimin Zheng, and Xinran Xu. Moon-
cake: A kvcache-centric disaggregated architecture for
llm serving, 2025b. URL https://arxiv.org/ab
s/2407.00079.

Ziran Qin, Yuchen Cao, Mingbao Lin, Wen Hu, Shixuan
Fan, Ke Cheng, Weiyao Lin, and Jianguo Li. Cake: Cas-
cading and adaptive kv cache eviction with layer prefer-
ences, 2025c. URL https://arxiv.org/abs/25
03.12491.

Redis. Redis enterprise software reference — redis docu-
mentation. https://redis.io/docs/latest
/operate/rs/references/, 2025. Accessed:
2025-09-10.

Zebin Ren, Krijn Doekemeijer, Tiziano De Matteis, Chris-
tian Pinto, Radu Stoica, and Animesh Trivedi. An i/o char-
acterizing study of offloading llm models and kv caches
to nvme ssd. In Proceedings of the 5th Workshop on Chal-
lenges and Opportunities of Efficient and Performant
Storage Systems, CHEOPS ’25, page 23–33, New York,
NY, USA, 2025. Association for Computing Machinery.
ISBN 9798400715297. doi: 10.1145/3719330.3721230.
URL https://doi.org/10.1145/3719330.
3721230.

Xiaoxiang Shi, Colin Cai, Junjia Du, and Zhihao Jia.
Nexus:proactive intra-gpu disaggregation of prefill and
decode in llm serving, 2025. URL https://arxiv.
org/abs/2507.06608.

William D. Strecker. Vax-11/780: A virtual address ex-
tension to the dec pdp-11 family. In Proceedings of the
National Computer Conference, pages 967–980, Mont-
vale, NJ, 1978. AFIPS Press.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao,
Baris Kasikci, and Song Han. Quest: Query-aware spar-
sity for efficient long-context llm inference, 2024. URL
https://arxiv.org/abs/2406.10774.

The AIBrix Team, Jiaxin Shan, Varun Gupta, Le Xu,
Haiyang Shi, Jingyuan Zhang, Ning Wang, Linhui Xu,
Rong Kang, Tongping Liu, Yifei Zhang, Yiqing Zhu,
Shuowei Jin, Gangmuk Lim, Binbin Chen, Zuzhi Chen,
Xiao Liu, Xin Chen, Kante Yin, Chak-Pong Chung,
Chenyu Jiang, Yicheng Lu, Jianjun Chen, Caixue Lin,
Wu Xiang, Rui Shi, and Liguang Xie. Aibrix: Towards
scalable, cost-effective large language model inference
infrastructure, 2025. URL https://arxiv.org/ab
s/2504.03648.

https://arxiv.org/abs/2404.16283
https://arxiv.org/abs/2404.16283
https://arxiv.org/abs/2310.07240
https://arxiv.org/abs/2310.07240
https://github.com/llm-d/llm-d
https://github.com/llm-d/llm-d
https://engineering.fb.com/2024/08/05/data-center-engineering/roce-network-distributed-ai-training-at-scale/
https://engineering.fb.com/2024/08/05/data-center-engineering/roce-network-distributed-ai-training-at-scale/
https://engineering.fb.com/2024/08/05/data-center-engineering/roce-network-distributed-ai-training-at-scale/
https://engineering.fb.com/2024/08/05/data-center-engineering/roce-network-distributed-ai-training-at-scale/
https://arxiv.org/abs/2405.06856
https://arxiv.org/abs/2405.06856
https://github.com/ai-dynamo/dynamo
https://github.com/ai-dynamo/dynamo
https://forums.developer.nvidia.com/t/why-is-the-transfer-throughput-low-when-transferring-small-size-data-from-host-to-device-or-device-to-host/153962
https://forums.developer.nvidia.com/t/why-is-the-transfer-throughput-low-when-transferring-small-size-data-from-host-to-device-or-device-to-host/153962
https://forums.developer.nvidia.com/t/why-is-the-transfer-throughput-low-when-transferring-small-size-data-from-host-to-device-or-device-to-host/153962
https://forums.developer.nvidia.com/t/why-is-the-transfer-throughput-low-when-transferring-small-size-data-from-host-to-device-or-device-to-host/153962
https://forums.developer.nvidia.com/t/why-is-the-transfer-throughput-low-when-transferring-small-size-data-from-host-to-device-or-device-to-host/153962
https://arxiv.org/abs/2311.18677
https://arxiv.org/abs/2311.18677
https://www.usenix.org/conference/fast25/presentation/qin
https://www.usenix.org/conference/fast25/presentation/qin
https://arxiv.org/abs/2407.00079
https://arxiv.org/abs/2407.00079
https://arxiv.org/abs/2503.12491
https://arxiv.org/abs/2503.12491
https://redis.io/docs/latest/operate/rs/references/
https://redis.io/docs/latest/operate/rs/references/
https://doi.org/10.1145/3719330.3721230
https://doi.org/10.1145/3719330.3721230
https://arxiv.org/abs/2507.06608
https://arxiv.org/abs/2507.06608
https://arxiv.org/abs/2406.10774
https://arxiv.org/abs/2504.03648
https://arxiv.org/abs/2504.03648


LMCache: An Efficient KV Cache Layer for Enterprise-Scale LLM Inference

The SGLang Team. Ome: Revolutionizing llm infrastruc-
ture with model-driven architecture. https://lmsys.
org/blog/2025-07-08-ome/, July 2025. Blog
post, LMSYS Org.

UCCL Team. Everything you want to know about kv cache
transfer engine. https://uccl-project.githu
b.io/posts/kv-transfer-engine/, August
2025. Blog post, August 13, 2025.

vLLM project. vllm production stack: Reference system
for k8s-native cluster-wide deployment with community-
driven performance optimization. https://gith
ub.com/vllm-project/production-stack,
2025. Version vllm-stack-0.1.7, released Sep 3,
2025.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian
Guo, Shang Yang, Haotian Tang, Yao Fu, and Song
Han. Duoattention: Efficient long-context llm infer-
ence with retrieval and streaming heads, 2024a. URL
https://arxiv.org/abs/2410.10819.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han,
and Mike Lewis. Efficient streaming language models
with attention sinks, 2024b. URL https://arxiv.
org/abs/2309.17453.

Zhiqiang Xie, Ziyi Xu, Mark Zhao, Yuwei An,
Vikram Sharma Mailthody, Scott Mahlke, Michael Gar-
land, and Christos Kozyrakis. Strata: Hierarchical context
caching for long context language model serving, 2025.
URL https://arxiv.org/abs/2508.18572.

Huan Yang, Renji Zhang, Mingzhe Huang, Weijun Wang,
Yin Tang, Yuanchun Li, Yunxin Liu, and Deyu Zhang.
Kvshare: An llm service system with efficient and effec-
tive multi-tenant kv cache reuse, 2025. URL https:
//arxiv.org/abs/2503.16525.

Lu Ye, Ze Tao, Yong Huang, and Yang Li. ChunkAttention:
Efficient self-attention with prefix-aware KV cache and
two-phase partition. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar, editors, Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 11608–11620, Bangkok,
Thailand, August 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.acl-long.623. URL
https://aclanthology.org/2024.acl-lon
g.623/.

Lingfan Yu, Jinkun Lin, and Jinyang Li. Stateful large lan-
guage model serving with pensieve. In Proceedings of
the Twentieth European Conference on Computer Sys-
tems, EuroSys ’25, page 144–158, New York, NY, USA,
2025. Association for Computing Machinery. ISBN
9798400711961. doi: 10.1145/3689031.3696086. URL

https://doi.org/10.1145/3689031.3696
086.

Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu,
Xupeng Miao, Xiaonan Nie, Weipeng Chen, and Bin
Cui. Pqcache: Product quantization-based kvcache
for long context llm inference, 2025. URL https:
//arxiv.org/abs/2407.12820.

Yan Zhang, Fei Li, Yanzhao Tang, Bingsheng He, Xiaoyong
Wu, and Jeffrey Xu Yu. Optimizing llm queries in rela-
tional workloads. arXiv preprint arXiv:2403.05821, 2024.
URL https://arxiv.org/abs/2403.05821.

Yilong Zhao, Shuo Yang, Kan Zhu, Lianmin Zheng, Baris
Kasikci, Yang Zhou, Jiarong Xing, and Ion Stoica. Blend-
serve: Optimizing offline inference for auto-regressive
large models with resource-aware batching, 2024. URL
https://arxiv.org/abs/2411.16102.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue
Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos
Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett,
and Ying Sheng. Sglang: Efficient execution of struc-
tured language model programs, 2024. URL https:
//arxiv.org/abs/2312.07104.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo
Zhu, Xuanzhe Liu, Xin Jin, and Hao Zhang. Dist-
serve: Disaggregating prefill and decoding for goodput-
optimized large language model serving, 2024. URL
https://arxiv.org/abs/2401.09670.

Yang Zhou, Zhongjie Chen, Ziming Mao, ChonLam Lao,
Shuo Yang, Pravein Govindan Kannan, Jiaqi Gao, Yilong
Zhao, Yongji Wu, Kaichao You, et al. An extensible soft-
ware transport layer for gpu networking. arXiv preprint
arXiv:2504.17307, 2025.

https://lmsys.org/blog/2025-07-08-ome/
https://lmsys.org/blog/2025-07-08-ome/
https://uccl-project.github.io/posts/kv-transfer-engine/
https://uccl-project.github.io/posts/kv-transfer-engine/
https://github.com/vllm-project/production-stack
https://github.com/vllm-project/production-stack
https://arxiv.org/abs/2410.10819
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2508.18572
https://arxiv.org/abs/2503.16525
https://arxiv.org/abs/2503.16525
https://aclanthology.org/2024.acl-long.623/
https://aclanthology.org/2024.acl-long.623/
https://doi.org/10.1145/3689031.3696086
https://doi.org/10.1145/3689031.3696086
https://arxiv.org/abs/2407.12820
https://arxiv.org/abs/2407.12820
https://arxiv.org/abs/2403.05821
https://arxiv.org/abs/2411.16102
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2401.09670

